Short Form Catallog MR-C Relays QR-C Relays TIME CUBE

RELECO

DESIGN \& FUNCTION

I N PERFECTHARMONY

GENERAL INFORMATION

Electrical and Mechanical Life

Designed to withstand 100.000 operations at full rated load and more than 20×10^{6} mechanical operations (measured at 6.000 operations/hour). Periodical Laboratory life tests give values higher than 100×10^{6} operations.
The maximum switching frequency is 1.200 operations/hour at max. rated load and 6.000 operations/hour at 50% of max. load.

Materials and Temperatures

All parts are made of high perfomance, self extinguishing materials for electrical equipment which can withstand temperatures up to $130^{\circ} \mathrm{C}$ without deformation. Operating and storage temperatures are respectively -20 to $+60^{\circ} \mathrm{C}$ and -20 to $+100^{\circ} \mathrm{C}$

Coil

The temperature rise in the coil when permanently energized, at nominal voltage, is $45^{\circ} \mathrm{C}$ max. at AC and $35^{\circ} \mathrm{C}$ max. at DC.
All coils are calculated to withstand a permanent connection at maximum ambient temperature of $60^{\circ} \mathrm{C}$ and $1.10 \times$ nominal voltage.
Coil inrush power (AC relays only) is approx.
$1.80 \times$ nominal power.

Standard Voltages

AC 24, 48, 115 (110-120), 230 V
DC 12, 24, 48, 110, 120-125, 220 V
All other voltages available upon request.

Protection Class

IP40 for relays and Time Cubes.

Socket Terminal Block

Suitable for cables on diameters from $2.25 \mathrm{~mm}^{2}$ down to $0.14 \mathrm{~mm}^{2}$.

Approvals (according to model) UL (USA), CSA (Canada), SEV (Switzerland), NEMKO (Norway), SETI (Finland), SEMKO (Sweden), DEMKO (Denmark), ÖVE (Austria), LLOYD'S (UK).
Comply with EN 60 947/4 \& 5 (IEC 947)
All approval values available upon request.

Mounting

Universal mounting: DIN-46277 rail and panel.
Standard Packing
10-pieces recyclable cardboard box.

Contacts Max. switching cap. (poll. 3 - industrial)
Coil Nominal power AC / DC
Coil operating voltage
Operating times Max. Pull-in / Drop-out

Other executions

Magnetic latching
Sensitive
Bifurcated contacts for low level signal

NEW

Open Gap ($>1.5 \mathrm{~mm}$) contacts
NEW
Double make contact NEW
Double make contact with magnetic blow out NEW

Sockets

for DIN rail
for panel -L / for PCB -P / for PCB with flange -PO

PART NUMBER KEY

Standard 8-pin
C2-A20 X / ...v

C2-A20 X

10 A / 250 V AC1
2.2 VA 1.3 W
$0.80 \times \mathrm{U}_{\mathrm{N}}$
$16 \mathrm{~ms} \quad 8 \mathrm{~ms}$
2500 VA
. 3 W
$1.1 \times U_{N}$
$\times \mathrm{U}_{\mathrm{N}}$
16 ms
C3-A30 X

10 A / 250 V AC1 2500 VA

$2,2 \mathrm{VA}$	$1,3 \mathrm{~W}$
$0,80 \times \mathrm{U}_{\mathrm{N}}$	$1,1 \times \mathrm{U}_{\mathrm{N}}$
16 ms	8 ms

Model Model

		C3-R20	ON 2,5 VA/W OFF 0,5 VA/W
		C3-S (250	C3-E (500 mW) / C3-N (800 mW)
C2-T21 X	$10 \mathrm{~mA} @$ 5V... 6 A/250 V AC1	C3-T31 X	10 mA @ 5V... 6 A / 250 V AC1
C2-G20 X	110 W / 1 A @ 110 V DC1	C3-G30 X	110 W / 1 A @ 110 V DC1
		C3-X10 X	6 A@110 V 1 1,2 A @ 220 V DC1
		C3-M10 X	10 A DC1 / 2 A DC13 @ 220 V

S2-S	S2-B	S3-S	S3-B	S3-MP	
S2-L	-	S2-PO	S3-L	-	S3-PO

Optional relay/socket Coding Ring

8 pin	S2-S
11 pin	S3-S

8 pin 11 pin

2-S S

S2-B
S3-B

11 pin
S3-MP

Plug-in 4-pole, 10A C4-A40 X /...v

C4-A40 X

10 A / 250 V AC1 2000 VA

2.4 VA	1.4 W	2.4 VA	1.4 W
$0.80 \times \mathrm{U}_{\mathrm{N}}$	$1.1 \times \mathrm{U}_{\mathrm{N}}$	$0.80 \times \mathrm{U}_{\mathrm{N}}$	$1.1 \times \mathrm{U}_{\mathrm{N}}$
20 ms	8 ms	20 ms	10 ms

Model
Model
C4-R30 ON 2.5 VA/W OFF 0.5 VA/W
C5-R20
ON 2.5 VA/W OFF 0.5 VA/W

C5-G30 X	110 W / 1 A @ 110 V DC1
C5-X10 X	6 A @ 110 V / 1.2 A @ 220 V DC1
C5-M10 X	10 A DC1 / 2 A DC13 @ 220 V

-	S4-B	-	S5-S		
S4-L	S4-P	S4-PO	S5-L	S5-P	S5-PO

S4-B

S5-S

C7-A20 X

1	3	2	4	7	
12	14	22	24	$A 1$	
4	1	4	1	0	0
	-1	-	0	0	
11	21	$A 2$			
5	6	8			

C9-A41 X

10 A / 250 V AC1 2500 VA

1.5 VA	1 W	1.5 VA	1 W
$0.80 \times \mathrm{U}_{\mathrm{N}}$	$1.1 \times \mathrm{U}_{\mathrm{N}}$	$0.80 \times \mathrm{U}_{\mathrm{N}}$	$1.1 \times \mathrm{U}_{\mathrm{N}}$
16 ms	8 ms	16 ms	8 ms

Model

Model
C9-R21

C9-E21

ON 1.5 VA /W OFF 0.3 VA/W
0.8 VA

600 mW

C7-T21X 10 mA @ $5 \mathrm{~V} . . .6 \mathrm{~A} / 250 \mathrm{~V}$ AC1
C7-G20 X (0.8 A @ 110 V DC1) C7-G10 X (16 A/ 250 V AC1)

$$
\text { C7-X10 X } 6 \text { A @ } 110 \text { V / } 1 \text { A @ } 220 \text { V DC1 }
$$

S7-MP			S9-M		
S7-L	S7-P	S7-PO	S9-L	S9-P	S9-PO

S7-MP

S9-M

Time Cube CT2 (8 pin) and CT3 (11 pin)

The Time Link

Releco's Timer module, the Time Cube, connects any brand of 8 and 11-pin relay and socket, transforming standard relays into timer relays.

Installation could not be easier. Remove the relay, insert the Time Cube in the socket and replace the relay. Easy as 1-2-3.
The Time Cube adds only 25 mm to the overall height of the relay. Just enough height to spot the relay, with special timer function, into your board.

Types		Operating voltage ranges
On delay		
HE	After driving by 2-10 (2-7), (R) energizes accoding to (t). (R) falls back again when 2-10 (2-7) switches out.	
On shot leading edge		
	After driving by 2-10 (2-7), (R) energizes immediately according 2-10 (2-7) switches out prematurely.	L : 20 to $65 \mathrm{Vac} / \mathrm{dc}$ (75 Vdc) S : 9.5 to 18 Vdc
Blinker		
	After driving by 2-10 (2-7), (R) energizes and falls back periodic intermittently for the set time lag $t 1$ and $t_{2} \cdot t 1=t_{2}, f=1 / t_{3}$.	
Off delay		
	After driving by (S), (R) energizes immediately. After switching out of $(\mathrm{S}),(\mathrm{R})$ releases according to (t).	U: 180 to $265 \mathrm{Vac} / \mathrm{dc}$ M: 90 to $150 \mathrm{Vac} / \mathrm{dc}$
On shot leading edge		L: 20 to $65 \mathrm{Vac} / \mathrm{dc}(75 \mathrm{Vdc})$ S: 9.5 to 18 Vdc
里	After driving by (S), (momentary or continuous), (R) energizes immediately according to (t).	

